首页> 外文OA文献 >Habitability of Super-Earth Planets around Main-Sequence Stars including Red Giant Branch Evolution: Models based on the Integrated System Approach
【2h】

Habitability of Super-Earth Planets around Main-Sequence Stars including Red Giant Branch Evolution: Models based on the Integrated System Approach

机译:超主星行星围绕主序星的可居住性   Red Giant Branch Evolution:基于集成系统方法的模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In a previous study published in Astrobiology, we focused on the evolution ofhabitability of a 10 M_E super-Earth planet orbiting a star akin to the Sun.This study was based on a concept of planetary habitability in accordance tothe integrated system approach that describes the photosynthetic biomassproduction taking into account a variety of climatological, biogeochemical, andgeodynamical processes. In the present study, we pursue a significantaugmentation of our previous work by considering stars with zero-age mainsequence masses between 0.5 and 2.0 M_sun with special emphasis on models of0.8, 0.9, 1.2 and 1.5 M_sun. Our models of habitability consider againgeodynamical processes during the main-sequence stage of these stars as well asduring their red giant branch evolution. Pertaining to the different types ofstars, we identify so-called photosynthesis-sustaining habitable zones (pHZ)determined by the limits of biological productivity on the planetary surface.We obtain various sets of solutions consistent with the principal possibilityof life. Considering that stars of relatively high masses depart from themain-sequence much earlier than low-mass stars, it is found that the biosphericlife-span of super-Earth planets of stars with masses above approximately 1.5M_sun is always limited by the increase in stellar luminosity. However, forstars with masses below 0.9 M_sun, the life-span of super-Earths is solelydetermined by the geodynamic time-scale. For central star masses between 0.9and 1.5 M_sun, the possibility of life in the framework of our models dependson the relative continental area of the super-Earth planet.
机译:在先前发表于《天体生物学》上的研究中,我们着重研究了一个10 M_E的超地球行星绕太阳运行的恒星的可居住性演变,该研究基于描述了光合作用的集成系统方法的行星可居住性概念。考虑到各种气候,生物地球化学和地球动力学过程的生物量生产。在本研究中,我们通过考虑零年龄主序质量在0.5到2.0 M_sun之间的恒星,特别是在0.8、0.9、1.2和1.5 M_sun模型上,对我们以前的工作进行了重大改进。我们的宜居性模型再次考虑了这些恒星主序阶段的地球动力学过程,以及它们的红色巨星分支演化过程。对于不同类型的恒星,我们确定了由行星表面生物生产力的限制所确定的所谓的光合作用维持适居区(pHZ)。我们获得了与生命的主要可能性相符的各种解决方案。考虑到质量相对较高的恒星比低质量恒星更早地离开主序列,发现质量超过1.5M_sun的恒星的超地球行星的生物圈寿命始终受到恒星光度增加的限制。 。但是,对于质量低于0.9 M_sun的恒星,超级地球的寿命仅由地球动力学时标确定。对于介于0.9和1.5 M_sun之间的中心恒星质量,在我们的模型框架内生命的可能性取决于超地球行星的相对大陆区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号